Decision-Theoretic Sparsification for Gaussian Process Preference Learning
نویسندگان
چکیده
We propose a decision-theoretic sparsification method for Gaussian process preference learning. This method overcomes the lossinsensitive nature of popular sparsification approaches such as the Informative Vector Machine (IVM). Instead of selecting a subset of users and items as inducing points based on uncertainty-reduction principles, our sparsification approach is underpinned by decision theory and directly incorporates the loss function inherent to the underlying preference learning problem. We show that by selecting different specifications of the loss function, the IVM’s differential entropy criterion, a value of information criterion, and an upper confidence bound (UCB) criterion used in the bandit setting can all be recovered from our decision-theoretic framework. We refer to our method as the Valuable Vector Machine (VVM) as it selects the most useful items during sparsification to minimize the corresponding loss. We evaluate our approach on one synthetic and two realworld preference datasets, including one generated via Amazon Mechanical Turk and another collected from Facebook. Experiments show that variants of the VVM significantly outperform the IVM on all datasets under similar computational constraints.
منابع مشابه
Bayesian Active Learning for Classification and Preference Learning
Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that e...
متن کاملEfficient Sampling for Gaussian Graphical Models via Spectral Sparsification
Motivated by a sampling problem basic to computational statistical inference, we develop a toolset based on spectral sparsification for a family of fundamental problems involving Gaussian sampling, matrix functionals, and reversible Markov chains. Drawing on the connection between Gaussian graphical models and the recent breakthroughs in spectral graph theory, we give the first nearly linear ti...
متن کاملIncremental online sparsification for model learning in real-time robot control
For many applications such as compliant, accurate robot tracking control, dynamics models learned from data can help to achieve both compliant control performance as well as high tracking quality. Online learning of these dynamics models allows the robot controller to adapt itself to changes in the dynamics (e.g., due to time-variant nonlinearities or unforeseen loads). However, online learning...
متن کاملBayesian Reinforcement Learning with Gaussian Process Temporal Difference Methods
Reinforcement Learning is a class of problems frequently encountered by both biological and artificial agents. An important algorithmic component of many Reinforcement Learning solution methods is the estimation of state or state-action values of a fixed policy controlling a Markov decision process (MDP), a task known as policy evaluation. We present a novel Bayesian approach to policy evaluati...
متن کاملControl of Gene Regulatory Networks with Noisy Measurements and Uncertain Inputs
This paper is concerned with the problem of stochastic control of gene regulatory networks (GRNs) observed indirectly through noisy measurements and with uncertainty in the intervention inputs. The partial observability of the gene states and uncertainty in the intervention process are accounted for by modeling GRNs using the partially-observed Boolean dynamical system (POBDS) signal model with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013